< Back to previous page

Publication

Neuronal activity and NIBS in developmental myelination and remyelination - current state of knowledge

Journal Contribution - Journal Article

Oligodendrocytes are responsible for myelinating central nervous system (CNS) axons. and rapid electrical transmission through saltatory conduction of action potentials. Myelination and myelin repair rely partially on oligodendrogenesis, which comprises. oligodendrocyte precursor cell (OPC) migration, maturation, and differentiation into. oligodendrocytes (OL). In multiple sclerosis (MS), demyelination occurs due to an. inflammatory cascade with auto-reactive T-cells. When oligodendrogenesis fails, remyelination becomes aberrant and conduction impairments are no longer restored. Although current disease modifying therapies have achieved results in modulating the. faulty immune response, disease progression continues because of chronic. inflammation, neurodegeneration, and failure of remyelination. Therapies have been. tried to promote remyelination. Modulation of neuronal activity seems to be a very. promising strategy in preclinical studies. Additionally, studies in people with MS. (pwMS) have shown symptom improvement following non-invasive brain stimulation. (NIBS) techniques. The aforementioned mechanisms are yet unknown and probably. involve both the activation of neurons and glial cells. Noting neuronal activity. contributes to myelin plasticity and that NIBS modulates neuronal activity; we argue. that NIBS is a promising research horizon for demyelinating diseases. We review the. hypothesized pathways through which NIBS may affect both neuronal activity in the. CNS and how the resulting activity can affect oligodendrogenesis and myelination.

Journal: Prog Neurobiol
ISSN: 0301-0082
Volume: 226
Publication year:2023
Keywords:MRI, Multiple sclerosis, myelin, neuronal activity, remyelination
Accessibility:Open