< Back to previous page

Project

Nanodiamond labelling of neuronal cells for molecular resolution neuronal and network-level imaging

This interdisciplinary project addresses the interactions of functionalised nanoparticles with neural tissues and their usage to probe the local environment and neural function. Fundamental progress must be made in two main research areas, the design of nanodiamond particles and the understanding of their chemical, electronic, and optical properties, as well as the biological and biophysics aspects, in particular insertion of the nanoprobes, their biocompatibility and non-contact detection. In parallel with the materials research, explored thanks to a recently granted FWO-project, and in a highly independent and complementary approach, the present request for a doctoral research project will focus on the bio-related aspects and the detection at the molecular and cellular level. The uptake and anchoring of functionalised nanodiamond labels will be investigated and monitored by electrophysiological techniques and confocal microscopy, keeping track of the influence on neural function. Neuronal cell culture with nanodiamond loading will be optimized as well as the use of drugs that affect neural interconnection. This work in the Neurobiology laboratory will be combined with the assessment and optimisation of the advanced detection techniques developed in the Physics research group. Foerster resonance energy transfer (FRET) and optically detected magnetic resonance (ODMR) will be applied and optimised for neural cell investigation in a confocal microscopy configuration and compared to the more classical patch-clamp methods for the high temporal-resolution detection of neural electrical activity.
Date:1 Jul 2012 →  30 Jun 2016
Keywords:EXPERIMENTAL STUDY, FRET, NEUROELECTRONICS, MAGNETIC RESONANCE
Disciplines:Condensed matter physics and nanophysics, Biophysics