< Back to previous page

Project

Product-Assemby Co-Design (PACo).

The Product-Assembly Co-Design (PACo) project is a project within the scope of the cluster Design & Optimisation of Flanders Make. The project aims at bridging the gap between product design and assembly system design by incorporating assembly knowledge into the early stages of the product development. Today, most companies consider assembly aspects later in the design process, often in a manual way, solely relying on the experience of assembly engineers. This leads to numerous design changes later on, causing significant extra costs. The current industrial context requires companies to aim at a first-time-right, down to lot size 1 at the cost of volume production strategy. Hence, considering assembly aspects too late or in a trial-and-error way is no longer an option. All companies involved in the user group of this project indicate a clear need to support their engineers with methods and software tools enabling assessment of assembly complexity in an early design stage, allowing co-optimization of product performance with ease-of-assembly in a quantitative way, and allowing trade-off analysis of various solutions.As these software tools are beyond the state-of-the-art, the research partners (FM-CodesignS, FM-ProductionS, AnSyMo/CoSys-lab, DMMS, and EEDT) will join forces to shift the state-of-the-art in product-assembly co-design, aiming at the following innovation goals: (1) a software environment for the formalization of assembly knowledge (e.g. Design-for-Assembly rules, assembly complexity metrics), (2) tools and algorithms for automated multi-objective optimization of the early-stage design of a product, taking into account the product performance and its assembly complexity, (3) tools and algorithms to automatically find the optimal assembly process (order of steps) and assembly system (resources allocation), for a given product design and a framework for the co-design of both product and its assembly system by combining both 1) and 2) in a semi-automated workflow.
Date:1 Sep 2018 →  31 Aug 2022
Keywords:MODEL DRIVEN ENGINEERING, MODEL BASED DESIGN, MECHATRONICS
Disciplines:Computer hardware, Computer theory, Scientific computing, Other computer engineering, information technology and mathematical engineering
Project type:Collaboration project