< Back to previous page

Publication

Taking the spectral overlap between excitation and emission spectra of fluorescent materials into account with Monte Carlo simulations

Book Contribution - Book Chapter Conference Contribution

Monte Carlo ray tracing is an important simulation tool in applications where fluorescence is present, e.g. in bio-medical applications and in the design of luminaires and luminescent solar concentrators. A frequently used ray tracing procedure for fluorescence is the dual stage approach. In this approach, first, all sources are traced through the system and the rays absorbed in the fluorescent components are stored. Next, the emission from the fluorescent components is traced. This approach does not allow for subsequent re-absorption and re-emission effects in fluorescent materials with a spectral overlap between excitation and emission spectra. In this work, a multi stage ray tracing procedure for the simulation of luminescence is presented. Herein, wavelengths are traced from short to long separately and no distinction is made regarding the origin of emission (either a fluorescent component or a source). The presented approach can be easily implemented in existing commercial ray tracing software thus reducing the programming efforts for the new ray tracing algorithm and taking advantage of the strength of the selected ray tracing package concerning the modelling of complex geometrical systems. Both techniques are compared to investigate the influence of the selected ray tracing approach on the efficiency and colour prediction of a remote phosphor LED module. © 2014 SPIE.
Book: Optical Modelling and Design III
Number of pages: 10
ISBN:9781628410792
Publication year:2014
BOF-keylabel:yes
IOF-keylabel:yes
Authors from:Higher Education