< Back to previous page

Project

Optimized skin tissue identification by combined thermal and hyperspectral imaging methodology.

The determination of local components in human skin from in-vivo measurements is crucial for medical applications, especially for aiding the diagnostic of skin diseases. In the study of skin cancer and burn wounds and more specifically as a methodology for diagnosis of cancer type and identification of skin penetration depth, it is of great relevance to investigate which cell types are present and how these are distributed at or below the skin surface. Consequently, a number of medical inspection techniques have been developed that can be used for the identification of malignant skin properties and more specifically skin cancer types. However, most of the existing techniques are increasingly contested because they either require destructive sampling (biopsy) or only measure on or under the skin surface (hyperspectral imaging) without identification of the penetration depth or detailed physiology of the maligned skin tissue. As a promising non-contact and non-destructive imaging technology, dynamic infrared thermography (DIRT) inspection will be used in combination with hyperspectral imaging (HSI) and physical modeling for fast and accurate skin property identification but also for assisted medical screening as it is possible to differentiate physiological properties based on a combined thermal-hyperspectral response of the skin. In order to optimize the accuracy and speed of tissue screening, the combined HS+IR measurement methodology will be assisted by numerical modeling.
Date:1 Jan 2020 →  31 Dec 2023
Keywords:SKIN TUMOURS, THERMOGRAPHY
Disciplines:Biomedical image processing, Modelling and simulation, Data visualisation and imaging, Dermatology
Project type:Collaboration project