< Back to previous page

Publication

Revealing the importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles : a case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium

Journal Contribution - Journal Article

Although the production and stabilization of metal nanoparticles (MNPs) is well understood, the behavior of these MNPs (possible aggregation or disaggregation) when they are intentionally or unintentionally exposed to different environments is a factor that continues to be underrated or overlooked. A case study is performed to analyze the stability of silver nanoparticles (AgNPs)-one of the most frequently used MNPs with excellent antibacterial properties-within two bacterial growth media: a minimally defined medium (IDL) and an undefined complex medium (LB). Moreover, the effect of aging, size and stabilization mechanisms is considered. Results clearly indicate a strong aggregation when AgNPs are dispersed in IDL. Regarding LB, the 100 nm electrosterically stabilized AgNPs remain stable while all others aggregate. Moreover, a serious aging effect is observed for the 10 nm electrostatically stabilized AgNPs when added to LB: after aggregation a restabilization effect occurs over time. Generally, this study demonstrates that the aging, medium composition (environment), size and stabilization mechanism-rarely acknowledged as important factors in nanotoxicity studies-have a profound impact on the AgNPs stabilization and should gain more attention in scientific research.
Journal: NANOMATERIALS
ISSN: 2079-4991
Volume: 9
Publication year:2019
Accessibility:Open