< Back to previous page

Project

Adaptive edge illumination-based phase contrast imaging.

In X-ray computed tomography (XCT), X-ray abso tion images of a sample are taken from multiple angles and subsequently used to form a 3D reconstruction of the full sample, based on the attenuation of X-rays. In a recently rising field in XCT, called edge illumination phase contrast CT, a specialized set-up is used to measure, apart from the attenuation, also the local scattering power in the scanned sample and the phase shift of the X-rays. Compared to attenuation, the scatter and phase signals hold complementary information of the scanned sample. Since these signals cannot be measured directly, an absorbing mask (a grating) must be placed in front of the sample and another mask in front of the x-ray detector. In the standard phase contrast imaging workflow, these masks are custom made for a specific imaging geometry and perfectly aligned to each other to achieve the right measurement conditions. The main drawback of this rigid set-up is that geometry changes that are common practice in traditional CT (e.g. zooming in on a sample to optimize the resolution and field-of-view) are not possible. Our aim here is to overcome this limitation by designing novel masks that adapt to geometry changes of the XCT set-up. This fundamental change will open up phase contrast imaging to a much larger variety of sample sizes and at different scales of resolution.
Date:1 Jan 2020 →  31 Dec 2023
Keywords:TOMOGRAPHY
Disciplines:Signal processing, Destructive and non-destructive testing of materials