< Back to previous page

Publication

Reconfiguration of Dynamic Functional Connectivity in Sensory and Perceptual System in Schizophrenia

Journal Contribution - Journal Article

Schizophrenia is thought as a self-disorder with dysfunctional brain connectivity. This self-disorder is often attributed to high-order cognitive impairment. Yet due to the frequent report of sensorial and perceptual deficits, it has been hypothesized that self-disorder in schizophrenia is dysfunctional communication between sensory and cognitive processes. To further verify this assumption, the present study comprehensively examined dynamic reconfigurations of resting-state functional connectivity (rsFC) in schizophrenia at voxel level, region level, and network levels (102 patients vs. 124 controls). We found patients who show consistently increased rsFC variability in sensory and perceptual system, including visual network, sensorimotor network, attention network, and thalamus at all the three levels. However, decreased variability in high-order networks, such as default mode network and frontal-parietal network were only consistently observed at region and network levels. Taken together, these findings highlighted the rudimentary role of elevated instability of information communication in sensory and perceptual system and attenuated whole-brain integration of high-order network in schizophrenia, which provided novel neural evidence to support the hypothesis of disrupted perceptual and cognitive function in schizophrenia. The foci of effects also highlighted that targeting perceptual deficits can be regarded as the key to enhance our understanding of pathophysiology in schizophrenia and promote new treatment intervention.

Journal: Cereb Cortex
ISSN: 1047-3211
Issue: 8
Volume: 29
Pages: 3577-3589
Publication year:2018
Keywords:Journal Article
CSS-citation score:3
Authors:International
Accessibility:Closed