< Back to previous page

Publication

Fetal postmortem imaging

Journal Contribution - Journal Article

Subtitle:an overview of current techniques and future perspectives

Fetal death because of miscarriage, unexpected intrauterine fetal demise, or termination of pregnancy is a traumatic event for any family. Despite advances in prenatal imaging and genetic diagnosis, conventional autopsy remains the gold standard because it can provide additional information not available during fetal life in up to 40% of cases and this by itself may change the recurrence risk and hence future counseling for parents. However, conventional autopsy is negatively affected by procedures involving long reporting times because the fetal brain is prone to the effect of autolysis, which may result in suboptimal examinations, particularly of the central nervous system. More importantly, fewer than 50%-60% of parents consent to invasive autopsy, mainly owing to the concerns about body disfigurement. Consequently, this has led to the development of noninvasive perinatal virtual autopsy using imaging techniques. Because a significant component of conventional autopsy involves the anatomic examination of organs, imaging techniques such as magnetic resonance imaging, ultrasound, and computed tomography are possible alternatives. With a parental acceptance rate of nearly 100%, imaging techniques as part of postmortem examination have become widely used in recent years in some countries. Postmortem magnetic resonance imaging using 1.5-Tesla magnets is the most studied technique and offers an overall diagnostic accuracy of 77%-94%. It is probably the best choice as a virtual autopsy technique for fetuses >20 weeks' gestation. However, for fetuses <20 weeks' gestation, its performance is poor. The use of higher magnetic resonance imaging magnetic fields such as 3-Tesla may slightly improve performance. Of note, in cases of fetal maceration, magnetic resonance imaging may offer diagnoses in a proportion of brain lesions wherein conventional autopsy fails. Postmortem ultrasound examination using a high-frequency probe offers overall sensitivity and specificity of 67%-77% and 74%-90%, respectively, with the advantage of easy access and affordability. The main difference between postmortem ultrasound and magnetic resonance imaging relates to their respective abilities to obtain images of sufficient quality for a confident diagnosis. The nondiagnostic rate using postmortem ultrasound ranges from 17% to 30%, depending on the organ examined, whereas the nondiagnostic rate using postmortem magnetic resonance imaging in most situations is far less than 10%. For fetuses ≤20 weeks' gestation, microfocus computed tomography achieves close to 100% agreement with autopsy and is likely to be the technique of the future in this subgroup. The lack of histology has always been listed as 1 limitation of all postmortem imaging techniques. Image-guided needle tissue biopsy coupled with any postmortem imaging can overcome this limitation. In addition to describing the diagnostic accuracy and limitations of each imaging technology, we propose a novel, stepwise diagnostic approach and describe the possible application of these techniques in clinical practice as an alternative or an adjunct or for triage to select cases that would specifically benefit from invasive examination, with the aim of reducing parental distress and pathologist workload. The widespread use of postmortem fetal imaging is inevitable, meaning that hurdles such as specialized training and dedicated financing must be overcome to improve access to these newer, well-validated techniques.

Journal: American Journal of Obstetrics and Gynecology
ISSN: 0002-9378
Issue: 4
Volume: 223
Pages: 493-515
Publication year:2020
Keywords:MRI, autopsy, congenital anomalies, diagnosis, management, micro-CT, minimally invasive, postmortem, stillbirth, termination, ultrasound, virtual autopsy
CSS-citation score:1
Accessibility:Closed