< Back to previous page

Project

Deterministic and inexpensive realizations of advanced control (DIRAC-SBO).

The mechatronic machine building and manufacturing industry is currently facing various control challenges that simple PID controllers and alike fail to address: systems are increasingly complex, need to comply to constraints, need to account for economic objectives and effectively cope with valuable preview information. Model Predictive Control (MPC) is the only advanced control approach able to address all these challenges, and this thanks to its model-based and optimization-based nature. Yet MPC's optimization-based nature currently impedes wide adoption in industrial mechatronic systems: current MPC implementations are expensive in terms of computational and memory resources, computation time is non-deterministic and hence MPC algorithms cannot be certified to operate at a given sampling rate, MPC development and deployment is not straightforward and comes with a high engineering cost because proper tools are missing. The project "Deterministic and Inexpensive Realizations of Advanced Control" (DIRAC) aims for a breakthrough of MPC in the mechatronic/machine building/manufacturing industry by resolving all impeding elements through accomplishments that revolve around the three keywords in its title:  - Deterministic: Novel MPC algorithms and approaches will be developed that can run reliably at a given sampling rate as well as methods to verify their worst-case computation times and control performance.  - Inexpensive: Implementations will be created that approximate "full-blown" (=online nonlinear optimization with high fidelity models) MPC and hence can run on inexpensive computational hardware with a quantifiable impact on control performance that is computed upfront.  A modular MPC toolbox will be developed facilitating the development, tuning and validation of advanced control at manageable engineering cost. - Realizations: We will demonstrate the MPC toolbox and potential of MPC on industrially relevant demonstrators and validation cases in order to break the status-quo in control practices, foster take-up and inspire Flemish industry.  The overarching tangible reusable generic result of this project is a toolbox that simplifies design of nonlinear MPC controllers and brings methodological advances in solvers, approximations and validation techniques to the fingertips of control practitioners.
Date:1 Sep 2020 →  Today
Keywords:EMBEDDED SYSTEMS, FORMAL VERIFICATION
Disciplines:Signals and systems
Project type:Collaboration project