< Back to previous page

Project

Towards tailored design and 3D printing of geopolymers as a novel application for conservation of stone-built heritage.

This research proposes a new development in the restoration sector is presented. This development consists of the application of 3D printed geopolymers in stone-built heritage. Stone-built heritage plays a significant role in the past as well as in today's society. Numerous structures, sculptures and other decorations are made in stone, ranging from purely functional structures to structures of significant historical and cultural value. Stone has quantitative properties, such as durability, which is why it is associated with longevity. However, the stone is not an inert material. It undergoes changes in appearance and functional capacity that can be understood as surface processes that lead to degradation, ultimately with an overall loss of value (damage). Currently, the conventional restoration method is the use of repair mortars. Repair mortars are an efficient way of preservation, aiming at maximum preservation of the original material. However, they also have many drawbacks, the main one being the lack of compatibility with the original material. It will eventually cause damage to the substrate. It is a very well-founded reason to look beyond the known and established products and methods from the restoration sector and conduct multidisciplinary research. By combining engineering and materials science with restoration sciences, we can develop new methods. A new method that can result from this is the application of 3D printed geopolymers. Geopolymers are stone-like materials which are placed between binders, such as cement and ceramics. The properties can be strongly influenced. Different types of geopolymers exist, depending on the system through which they are activated. In this study, we would like to focus on alkali-activated geopolymers because they can be manufactured from waste materials. In this way, this is a circular material, and therefore CO2 production is significantly reduced. An additional advantage of using alkali-activated geopolymers is that the equipment to print this type of geopolymer already exists (but we do not rule out the possible use of other types of geopolymers in the future). By conducting this research, a new and innovative working method can be developed for the restoration industry. It will improve the restoration process so that our stone heritage can be well preserved for later generations, despite the degradation processes of stone. At the same time, this research also yields a sustainable method, which will be crucial for later generations to continue to admire the heritage.
Date:1 Jul 2021 →  31 Dec 2022
Keywords:3D PRINTING, STONE CONSERVATION, GEOPOLYMER
Disciplines:Construction materials, Conservation-restoration techniques, Other materials engineering not elsewhere classified