< Back to previous page

Publication

Two dimensional V2O3 and its experimental feasibility as robust room-temperature magnetic Chern insulator

Journal Contribution - Journal Article

The possibility of dissipationless chiral edge states without the need of an external magnetic field in the quantum anomalous Hall effect (QAHE) offers a great potential in electronic/spintronic applications. The biggest hurdle for the realization of a room-temperature magnetic Chern insulator is to find a structurally stable material with a sufficiently large energy gap and Curie temperature that can be easily implemented in electronic devices. This work based on first-principle methods shows that a single atomic layer of V2O3 with honeycomb–kagome (HK) lattice is structurally stable with a spin-polarized Dirac cone which gives rise to a room-temperature QAHE by the existence of an atomic on-site spin–orbit coupling (SOC). Moreover, by a strain and substrate study, it was found that the quantum anomalous Hall system is robust against small deformations and can be supported by a graphene substrate.
Journal: npj 2D Materials and Applications
ISSN: 2397-7132
Issue: 65
Volume: 5
Pages: 1 - 8
Publication year:2021
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:10
CSS-citation score:1
Authors:International
Authors from:Government, Higher Education
Accessibility:Open