< Back to previous page

Publication

Computational Protocol to Calculate the Phosphorescence Energy of Pt(II) Complexes: Is the Lowest Triplet Excited State Always Involved in Emission? A Comprehensive Benchmark Study

Journal Contribution - Journal Article

The reliable calculation of phosphorescence energies of phosphor materials is at the core of designing efficient phosphorescent organic light-emitting diodes (PhOLEDs). Therefore, it is of paramount importance to have a robust computational protocol to perform those calculations in a black-box manner. In this work, we use Domain-Based Local Pair Natural Orbital Coupled Cluster theory with single, double, and perturbative triple excitation (DLPNO-CCSD(T)) calculations to attain the phosphorescence energies of a large pool of Pt(II) complexes. Several approaches to incorporate relativistic effects in our calculations were tested. In addition, we have used the DLPNO-CCSD(T) values (i.e., our best theoretical values) to assess the performance of different flavors of density functional theory including pure, hybrid, meta-hybrid, and range-separated functionals. Among the tested functionals, the M06HF functional provides the best values compared with the DLPNO-CCSD(T) ones, with a mean absolute deviation (MAD) value of 0.14 eV. In its turn, and thanks to the increased accuracy achieved in the calculation of phosphorescence energies, we also demonstrate that not all of the investigated complexes emit from their lowest-lying triplet state (T1). The outlier complexes include different complex photophysical scenarios and both Kasha and anti-Kasha types of complexes. Finally, we provide a general computational protocol to pre-screen whether T1 is actually the emissive state and to accurately calculate the phosphorescence energies of Pt(II) complexes.
Journal: Inorganic Chemistry
ISSN: 0020-1669
Issue: 22
Volume: 60
Pages: 17230 - 17240
Publication year:2021
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:3
CSS-citation score:1
Authors from:Higher Education
Accessibility:Open