< Back to previous page

Project

Pacifix (Part I): Framework for Patient-Specific Plate Fixation of bone fragments: application to distal radius fractures.

In the Pacifix project, an algorithm to automatically segment and reduce the segments of a fractured bone will be developed. This framework will help clinicians to gain better insight in the 3D anatomy of the fracture and thus plan surgical procedures. This need arises for all bone fractures near joints, but Pacifix is focusing on the most common (32K/y in Belgium): distal radius fractures. Pacifix combines shape modeling, artificial intelligence, and clinical expertise to, based on CT data, enable the surgeon 1) to interact with 2D/3D images preoperatively, and 2) to design a patient-specific pre-operative plan. In the Pacifix project, we will offer software tools to enable an automated CT analysis. This will save the surgeon time in preparing a pre-operative plan and in performing the surgery. In addition, the algorithm will generate a more qualitative reduced result, which will better resemble the original anatomy of the bone. These algorithms are also valuable for a subsequent trajectory, to virtually design personalized fixation plates. Nowadays such implants cause friction on the soft tissues due to a poor fit and there is a lack of sufficient fixation options. Hardware failure, tendon ruptures and/or malunions occur in up to 36% of the cases.
Date:1 Jan 2022 →  30 Apr 2023
Keywords:MODELLING, SEGMENTATION, REDUCTION
Disciplines:Biomedical image processing, Pattern recognition and neural networks, Image-guided interventions