< Back to previous page

Project

Towards a sustainable scale of subsurface developments: an ecological economics approach (TraSCee).

Social-ecological systems are linked systems of people and nature, emphasizing that humans must be seen as a part of, not apart from, nature. Currently, there exists no sound scientific basis that describes the complex interactions at the interface of the geological system component and the socio-economic system component. Decisions on subsurface utilization, changes in the subsurface, associated above-ground global and local environmental changes, energy production systems, energy consumption patterns, and waste disposal networks are activities that mediate between the geological and socio-economic elements of the broader socio-ecological system. To govern this system, it is important to create an understanding about how socio-economic and geological conditions influence the processes and patterns which define this system and the embedded interactions. The objective of this research project is to bring together the necessary elements for modelling the geological and socio-economic system to study interacting processes related to specific subsurface activities (deep geothermal, seasonal gas storage and high-radioactive waste disposal) in a relevant geological context, i.e. the Campine Basin. This will allow to consider how the subsurface reservoir under consideration can optimally be developed. This implies defining the concept of sustainable scale by dimensioning and timing activities so that current and future generations can equally benefit from the subsurface resources. Each of the activities lay in their own way a temporary or permanent claim on the subsurface, and equally differently contribute to current and future wellbeing. The research result is a prior geological-socio-economic model that will act as a stochastic framework and that makes the current understanding and uncertainties about above and below ground interactions explicit. Each following reservoir or socio-economic model analyzing subsurface development scenarios for the Campine Basin will draw directly from this framework and will be able to be mapped to it. First, current geological and socio-economic models of the Campine Basin will be reviewed and translated into a suited prior geological-socio-economic modelling framework. Then, the asymmetry of below and above ground interference effects related to these three activities will be identified and described in a real geological-economic context and it will be discussed how this leads to a nested and interactive reservoir model connected to a socio-economic decision framework. Starting from this informed conceptualized model, the different subsurface activities will be modelled in box-type reservoir and socio-economic models that will facilitate the setting of boundary conditions, as well as allow to combine models into one framework. This approach of nested modelling allows to integrate geological and socio-economic outputs and advance them to study the interferences of the different activities, and link this subsurface component to the socio-economic system component.
Date:1 Dec 2021 →  30 Nov 2023
Keywords:CONFLICT MANAGEMENT, SUSTAINABILITY, LAND USE POLICY, NATURAL RESOURCES
Disciplines:Agricultural and natural resource economics, environmental and ecological economics, Industrial economics