< Back to previous page

Publication

Drug-resistance in visceral leishmaniasis

Book - Dissertation

Subtitle:impact on parasite infectivity in the vertebrate host and sand fly vector
Visceral leishmaniasis (VL) is causing 50,000 to 90,000 new cases annually and more than 20,000 deaths which makes it the deadliest parasitic disease after malaria. In the absence of a successful vaccine, the main VL control strategy is dependent on chemotherapy, however, only a few antileishmanial treatment options are available. Miltefosine (MIL) is currently the only oral drug for VL but is failing to fully clear parasites in an increasing number of patients. These treatment failures could initially not be linked to the emergence of resistance, although more recently a few MIL-resistant (MIL-R) clinical isolates have been described. In order to safeguard the use of MIL for future VL therapies, it is essential to evaluate the impact of MIL-resistance on parasite fitness in the vertebrate host and sand fly vector as this could indicate the potential spread of resistant parasites into the population. In accordance with previous studies using a laboratory MIL-R L.infantum, a decreased infectivity of the vertebrate host was observed for a natural MIL-R L. infantum. However, no impact on the development of the parasite in the sand fly vector was observed. These results indicate that the impact of resistance on parasite fitness in the vertebrate host and insect vector may not necessarily be the same and indicate the potential transmission of MIL-R parasites. To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo infectivity and drug efficacy, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of laboratory MIL-R and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-? levels, finally resulting in a relatively lower burden of MIL-R parasites in liver macrophages. The elevated IFN-? levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites which contributed to the attenuated MIL-R phenotype. In addition, it was demonstrated that the presence of MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-? production. These results highlight the potential risk of MIL treatment in sustaining infections with resistant parasites. Close monitoring of parasite drug susceptibility and adjusted treatment protocols would therefore be beneficial.
Number of pages: 202
ISBN:978-90-5728-681-0
Publication year:2021
Keywords:Doctoral thesis
Accessibility:Closed