< Back to previous page

Project

Towards a universal plastic REcyclability predictor by bridging STatistical entropy, Energy analysis and Polymer reaction engineering (RESTEP)

Plastics are an integral part of our daily lives, however, they are difficult to recycle. Nevertheless, the diversity of polymeric materials is still increasing, despite societal and legislative pressure to reduce their complexity. Unfortunately life cycle assessment and techno-economic assessment always start from enthalpic considerations, i.e. material and energy balances, rather than entropic considerations, i.e. product complexity and structure. This leads to the paradoxical situation that we do not know which waste material is of enough high value to recycle taking into account any (future) market conditions, and that we do not exactly know how to produce plastics to optimize the value of post-consumer recyclate. Moreover, the (macro)molecular level, which determines macroscopic properties, is never addressed, although it is well-recognized that industrial polymer synthesis is characterized by significant inter-and intramolecular variations. A linking of polymer reaction eng (PRE; Ghent University expertise) and generic sustainability assessment (SA) methods (University of Antwerp) is thus almost absent but highly recommendable, justifying the scope. We aim at a generic method for the prediction and optimization of the recyclability of economic goods starting at the molecular level. In the long run the method can predict on the fly whether chemical modifications are not only worthwhile application wise but also in view of recyclability.

Date:1 Jan 2022 →  Today
Keywords:Polymerization kinetics, sustainability, prediction of recycling
Disciplines:Recycling, Polymers and plastics, Polymer recycling, Polymer reaction engineering