< Back to previous page

Project

Microsen - Elucidating anti-biofouling on nanoporous gold surfaces: toward microneedle devices for continuous drug sensing.

Therapeutic drug monitoring (TDM) has the potential to improve patients' quality of life and reduce the healthcare burden. Current TDM methods rely on embedded sensors in catheters or painful venous blood extraction with the analysis in centralised laboratories. This explains the need for non-invasive and real-time TDM through wearable and portable electrochemical devices. However, low limits of detection and continuous monitoring are still unsolved issues, with the biofouling process occurring at the electrode's surface being the main bottleneck. Therefore, the exploration of nanoporous gold (np-Au) as a functional material in microneedles (MN) will provide anti-biofouling features while exhibiting excellent analytical performance. Indeed, protein adsorption (the main cause of biofouling) only occurs at the outer level of the nanoporous material leaving most of the electroactive sites available for the electrochemical process. Microsen will elucidate: 1) the fundamental electrochemical processes at a nanoporous surface, 2) the relationship between the np-Au structure and protein adsorption, and 3) the enhanced electrocatalytic activity of the target molecules, methotrexate and esketamine, using np-Au. By doing, Microsen will introduce novel MN sensors for methotrexate and esketamine to allow long-term monitoring for painless TDM in chemotherapy and depression treatment respectively.
Date:1 Oct 2022 →  Today
Keywords:ELECTROCHEMISTRY
Disciplines:Chemical aspects of sensor technology, Electrochemical methods, Nanomaterials, Biosensors, Functionalisation of materials