< Back to previous page

Project

Coastal wetland response to sea level rise: an integrative marsh – mangrove study on soil elevation and soil carbon response.

Coastal wetlands, such as tropical mangrove forests and salt marshes in temperate climates, are unique ecosystems that are often feared to be lost by sea level rise. They can however adapt to a rising sea level to some extent by raising their elevation via sediment accumulation, and they can mitigate climate warming by storing carbon from the atmosphere into their soils. Present insights into the feedbacks between the rates of sea level rise, sediment and carbon accumulation mainly come from studies on marshes in temperate climates, while much less is known for tropical mangroves. Here we will conduct for the first time an integrated field and modelling study on these feedbacks in both mangroves and marshes. We will investigate the hypotheses that: (1) the response of mangroves and marshes to sea level rise is governed by similar feedbacks between the degree of flooding (frequency, duration and depth of tidal flooding), sediment and carbon accumulation rates; (2) the specific strength of these feedbacks, and hence the capacity to accumulate soil carbon and build up of soil elevation with sea level rise, differs between mangroves and marshes due to intrinsic vegetation differences. This project will generate a unique comprehensive field data set which will feed the development of a common model for both mangroves and marshes to simulate expected changes in the rates of sediment and carbon accumulation in response to 21st century scenarios of sea level rise. Based on the model and on global datasets we will provide a new assessment of global changes in carbon accumulation rates and in areas of mangroves and marshes under sea level rates expected for the 21st century.
Date:1 Jan 2018 →  31 Dec 2021
Keywords:SOIL CARBON, COASTAL WETLANDS
Disciplines:Physical geography and environmental geoscience
Project type:Collaboration project