< Back to previous page

Project

In-line quantization of the hydrogen gas yield from photoelectrochemical treatment of volatile organic compounds.

The goal of this project is to simultaneously address two persistent needs of today's society: sustainable energy production and good air quality. TiO2-based photocatalysis has proven to be successful in both light-driven hydrogen production as well as the degradation of organic pollutants. In this project the intention is to couple both applications in a single device, this way recovering part of the energy stored in the organic molecules as hydrogen gas, while mineralizing the carbon fraction to CO2. This process can be performed in a photoelectrochemical cell. Oxidation of VOCs occurs at the photo-anode, while hydrogen is produced at the cathode on the opposite side of a proton-conducting solid electrolyte membrane. Accurate and in-line detection of hydrogen gas as the desired reaction product is crucial for a thorough understanding of the cell operation. This grant is thus intended for purchasing a gas chromatograph with a state-of-the-art Barrier Ionization Discharge (BID) trace detection system for accurate analysis of hydrogen gas production at the cathode, that will complement existing infrastructure used to analyze photocatalytic VOC degradation at the photo-anode.
Date:1 Jan 2019 →  31 Dec 2021
Keywords:PHOTOELECTROCHEMICAL TREATMENT, PHOTOCATALYSIS
Disciplines:Systems biology not elsewhere classified