< Back to previous page

Project

The neural correlates of auditory conscious perception.

Consciousness is one of the greatest mysteries unresolved by neuroscience. Perceiving auditory stimuli with a meaning consciously is a crucial sensory perception. Understanding the brain mechanisms involved in auditory conscious perception, such as noise and tones is crucial for gaining knowledge about consciousness. Hearing is performed primarily by the auditory system. It has been shown that activity in the auditory cortex is necessary, but not sufficient for auditory consciousness. In order to perceive an auditory stimulus consciously different brain networks need to be co-activated. In this project I try to map and disentangle these different brain networks, and determine their exact function related to consciousness by including three populations, one without auditory consciousness (deaf people), one with normal auditory consciousness and one with too much auditory conscious percepts (phantom sounds). Auditory stimulus presentation just below, at and above hearing threshold will be analyzed using different neuroimaging and neuromodulation techniques. This research project fundamentally contributes to understanding the neurobiological mechanisms involved in auditory conscious perception. Secondly, it contributes to a new approach in neuroscience by introducing network science technology in consciousness research and thirdly, it might help in the development of new diagnostic tools and treatments for patients with auditory disorders.
Date:1 Oct 2011 →  30 Sep 2013
Keywords:AUDITORY SYSTEM, NEUROLOGY
Disciplines:Neurosciences, Biological and physiological psychology, Cognitive science and intelligent systems, Developmental psychology and ageing