< Back to previous page

Project

Non-linear and time-varying data-based modeling of rotating machinery.

Rotating machines appear in many application fields ranging from large scale applications (e.g. wind turbines) to smaller ones (e.g. medical fluid pumps). The availability of a mathematical model for the dynamical behavior is of crucial importance for the design, prediction and control of these rotating systems. In the scientific domain of "system identification", the mathematical model of the system under test is retrieved through experimental input-output data. Since the dynamical characterization of rotating machines is non-linear as well as time-varying, it cannot be modeled adequately using classical existing estimation or identification methods. The aim of this project is then to develop a theoretical framework to model the time-varying and non-linear dynamical behavior of rotating machinery from experimental data. The proposed methodology consists of modeling the non-linear and time-varying dynamical character of rotating devices through a collection of linear periodically time-varying models. In this project, we will focus on the identification and validation of the non-linear and time-varying dynamics of a mechanical rotor suspended on hydrodynamic plain bearings. The novel approach consists of four main steps: (i) Construction of a non-linear and time-varying virtual model of "fluid-driven" bearing—rotor systems starting from the laws of physics; (ii) Development of a parametric identification technique; (iii) realization and adjustments of the controllable rotor—bearing setup; (iv) validation of the theoretical framework on the real-life rotor—bearing setup.
Date:1 Jul 2016 →  31 Dec 2017
Keywords:SYSTEM DYNAMICS, ESTIMATION METHODS
Disciplines:Applied mathematics in specific fields, Computer architecture and networks, Distributed computing, Information sciences, Information systems, Programming languages, Scientific computing, Theoretical computer science, Visual computing, Other information and computing sciences, Modelling, Mechanics, Mechatronics and robotics, Biological system engineering, Signal processing