< Back to previous page

Project

Optimisation and integration of experimental and modelling approaches to study the three-dimensional dynamics of the beak in songbirds.

Beak function is of central importance in avian evolution, including the textbook examples of adaptive radiations in finches. To fully understand these adaptation processes, improved insight into the (bio)mechanics of beak movement is needed. This project aims at developing, optimising, and integrating experimental and modelling approaches to assess the dynamics of the cranial musculoskeletal system underlying the 3D movement of the upper and lower beak in a select number of songbird species, focussing primarily on the beak's role during feeding. Experimental approaches will include kinematic analyses using multi-view, synchronised high-speed videography and stereoscopic X-ray videography, and in vitro quantification of contractile properties of cranial muscles and tendons. Modelling approaches include the formulation and validation of mathematical models of muscle contraction, and numerical simulations of the moving head skeleton. These techniques will be optimised for their application to cranial systems of small birds, and implemented to improve our understanding of beak movement mechanics in birds. This research will provide the fundamental knowledge and analysis tools that will be essential in future comparative research projects on the evolution of form and function in songbirds.
Date:1 Dec 2019 →  Today
Keywords:KINEMATICS, BIRDS, BIOMECHANICS
Disciplines:Animal morphology, anatomy and physiology