< Back to previous page


Simulation based testing of large scale internet of things applications.

The goal of this project is to introduce a simulation based methodology which will be used to cope with the scalability constraints of modern IoT software testing, and more specifically the testing of ultra large scale systems with emergent behavior. With IoT becoming more mainstream and with the rise in the amount of devices getting interconnected, the complexity and scale of the IoT landscape will largely increase. This interoperability between IoT devices and actuators of all sorts will prove to be vital for future IoT applications. As a result of the increased scale and diversity and because of modern decentralized IoT architectures such as Edge computing, we see that a whole new type of IoT application will gain importance. A type of application where local decentralized interaction between devices and actors will lead to a global emergent behavior. The concept of emergence can be compared to a flock of birds, where local interactions between individual birds lead to a global optimized behavior. This idea is also very relevant in IoT, imagine for example a smart traffic light application where local interactions between traffic lights could lead to a global optimized traffic flow. This type of IoT application will however lead to major difficulties with regards to application validation, testing and calibration. That is because in order for realistic emergent behavior to arise, the IoT application will need to be executed in a large-scale and diverse environment. An environment that resembles the eventual operational environment. Deploying such applications to a real-life isolated IoT testbed would be impractical as the cost of setting up such an environment at a realistic scale is too high and requires too much effort in the early stages of development. Instead of relying on expensive test beds, we propose a large scale simulation based approach. Such a simulation -based system needs to incorporate hundreds of thousands of virtual sensors interacting among each other and with the environment. The behavior of these systems will need to be modeled carefully. However, this leads to additional technical challenges. Also all virtual sensors in the system should be continuously active to interact in a real-time fashion with other systems. That is because an important part of the behavior of conventional IoT systems and EBI systems is controlled by an IoT middle-ware, the simulated entities should be able to interact with the middleware as if they were real-life IoT entities. We refer to this as software-in-the-loop (SIL) simulation. Because of this real-time requirement, a great amount of simulation entities should run in parallel which highly increases the computational complexity. Solely relying on state-of-the-art large-scale simulation techniques is insufficient. The contribution of this project is focused on the creation of a methodology for running real-time, large-scale simulations for testing and analyzing both conventional IoT systems and emergent behavior based IoT systems. We will focus on two major tracks, in the first we will reduce the computational complexity by dynamically increasing abstraction levels of simulation models and in the second track we aim at reducing network communication overhead of distributed simulations by optimizing the partitioning of simulation entities over multiple simulation servers.
Date:1 Jan 2019 →  31 Dec 2021
Disciplines:Artificial intelligence not elsewhere classified