< Back to previous page


SOLARPAINT: Understanding the durability of light sensitive materials: transferring insights between solar cell physics and the chemistry of paintings.

When light interacts with matter, it responds to this external stimulus in ways that depend on macroscopic properties but also on the microscopic details of the material. Pigments for instance, have a wavelength dependent reflection and absorption that causes the appearance of color in e.g. oil paintings. The absorption of light can also be used to capture the energy stored in solar light for use in photovoltaic solar cells. Perhaps surprisingly, the microscopic function of solar cells and pigments have a lot in common. Both absorb light and suffer from deterioration upon prolonged illumination and environmental conditions. This leads to chemical degradation (and altered colors) in historical paintings and to gradually reducing efficiencies in organic solar cells. In order to better understand their function and alteration behaviour, in this project, we propose to study in detail the microscopic origins of the capturing of light in heterogeneous materials found in oil paints and organic solar cells by combining state of the art experimental techniques based on synchrotron radiation and electron microscopy with advanced quantum mechanical models. This multidisciplinary approach will enable to improve the function and durability of future organic solar cells and will help to preserve and restore historical paintings from our cultural heritage.
Date:1 Jan 2015 →  31 Dec 2018
Disciplines:Condensed matter physics and nanophysics, Analytical chemistry, Pharmaceutical analysis and quality assurance