< Back to previous page


Sustainable Internet of Batteryless Things (IoBaleT).

The Internet of Things (IoT) vision has enabled the wireless connection of billions of battery-powered devices to the Internet. However, batteries are expensive, bulky, cause pollution and degrade after a few years. Replacing and disposing of billions of dead batteries every year is costly and unsustainable. We posit the vision of a sustainable Internet of Battery-Less Things (IoBaLeT). We imagine battery-less devices storing small amounts of energy in capacitors, harvested from their environment or obtained through simultaneous wireless information and power transfer (SWIPT). Using this energy, these intermittently-powered devices are able to cooperatively perform sensing, actuation and communication tasks. Existing battery-less technology has many shortcomings. Such devices, usually based on passive RFID and backscatter, only support simple sensing, unable to handle more complex application logic. Networks do not scale, have a short range and a very low throughput. The goal of IoBaLeT is to bring battery-less technology to the next level. We envision battery-less devices and networks that support complex sensing and actuation applications, and offer throughput, scalability and range on-par with their battery-powered counterparts. To achieve this, we propose a novel battery-less IoT device design that relies on a combination of SWIPT, hybrid energy harvesting, active transmissions and wake-up radios. The project will innovate in terms of SWIPT efficiency, battery-less networking protocols, and distributed intermittent computing paradigms and scheduling algorithms. Leaving batteries behind will enable IoT applications at an unprecedented scale, with a significantly extended lifetime and in hard-to-reach places.
Date:1 Oct 2020 →  Today
Disciplines:Electronic circuit and system reliability, Embedded systems
Project type:Collaboration project