< Back to previous page


Can nuclear imaging accurately detect scar in ischemic cardiac resynchronization therapy candidates?

Journal Contribution - Journal Article

BACKGROUND: Accurate scar assessment is crucial in cardiac resynchronization therapy (CRT) candidates, since its presence is a negative predictor for CRT response. Therefore, we assessed the performance of different PET parameters to detect scar in CRT candidates. METHODS: Twenty-nine CRT candidates underwent 18F-fluorodeoxyglucose (18F-FDG)-PET/computed tomography (CT), resting 13N-NH3-PET/CT and cardiac magnetic resonance (CMR) prior to CRT implantation. Segmental 18F-FDG uptake, late 13N-NH3 uptake and absolute myocardial blood flow (MBF) were evaluated for scar detection using late gadolinium enhancement (LGE) CMR as reference. A receiver operator characteristic (ROC) area under the curve (AUC) ≥0.8 indicated a good accuracy of the methods evaluated. RESULTS: Scar was present in 111 of 464 segments. None of the approaches could reliably identify segments with nontransmural scar, except for 18F-FDG uptake in the lateral wall (AUC 0.83). Segmental transmural scars could be detected with all methods (AUC ≥ 0.8), except for septal 18F-FDG uptake and MBF in the inferior wall (AUC < 0.8). Late 13N-NH3 uptake was the best parameter for transmural scar detection, independent of its location, with a sensitivity of 80% and specificity of 92% using a cutoff of 66% of the maximum tracer activity. CONCLUSIONS: Late 13N-NH3 uptake is superior to 13N-NH3 MBF and 18F-FDG in detecting transmural scar, independently of its location. However, none of the tested PET parameters was able to accurately detect nontransmural scar.
Journal: Nuclear Medicine Communications
ISSN: 0143-3636
Issue: 5
Volume: 43
Pages: 502 - 509
Publication year:2022