< Back to previous page


Evaluating micellar liquid chromatographic methods on octadecyl particle-based and monolithic columns to predict the skin permeation of drug and cosmetic molecules

Journal Contribution - Journal Article

A micellar liquid chromatographic method was developed to assist in the modeling of the skin permeability of pharmaceutical and cosmetic compounds. The composition of the mobile phase was determined by means of a two-factor central composite design, after which it was tested on both a particle-based and monolithic column. The latter provided the opportunity to increase the flow rate from 1 to 8 mL/min without reaching too high backpressures. The micellar conditions allowed analyzing a large test set of compounds with diverse characteristics with just one mobile-phase composition. The obtained experimental chromatographic descriptors besides two sets of theoretical molecular descriptors were used to model the skin permeability coefficient log Kp, applying multiple linear regression and partial least squares regression approaches. The micellar method on the monolithic column provided useful models with similar or even slightly better performance parameters than the method on the particle-based column. Furthermore, a much faster analysis can be achieved when applying a flow rate of 8 mL/min, making the micellar monolithic method ideal to estimate skin permeability.

Journal: Journal of chromatography
ISSN: 0021-9673
Volume: 1663
Keywords:Micellar liquid chromatography, Monolithic column, Quantitative retention-activity relationship models, Quantitative structure-activity relationship models, Skin permeability
  • DOI: https://doi.org/10.1016/j.chroma.2021.462753
  • ORCID: /0000-0002-8957-2878/work/106212053
  • ORCID: /0000-0003-1349-492X/work/106211189
  • ORCID: /0000-0001-8773-6843/work/106211016
  • ORCID: /0000-0002-7788-9886/work/106210904
  • Scopus Id: 85121685567