< Back to previous page


Micronuclei, inflammation and auto-immune disease

Journal Contribution - Journal Article

Auto-immune diseases (AUD) are characterized by an immune response to antigenic components of the host itself. The etiology of AUD is not well understood. The available evidence points to an interaction between genetic, epigenetic, environmental, infectious and life-style factors. AUD are more prevalent in women than in men; sex hormones play a crucial role in this sex bias. Micronuclei (MN) emerged as a new player in the induction of AUD, based on the capacity of DNA-sensors to detect self-DNA that leaks into the cytoplasm from disrupted MN and induce the cGAS-STING pathway triggering an innate auto-immune response and chronic inflammation. It was found that inflammation can induce MN and MN can induce inflammation, leading to a vicious inflammation-oxidative-DNA damage-MN-formation-chromothripsis cycle. MN originating from sex chromosome-loss may induce inflammation and AUD. We performed a systematic review of studies reporting MN in patients with systemic or organ-specific AUD. A meta-analysis was performed on lymphocyte MN in diabetes mellitus (10 studies, 457 patients/290 controls) and Behcet's disease (3 studies, 100 patients/70 controls) and for buccal MN in diabetes mellitus (11 studies, 507 patients/427 controls). A statistically significant increase in patients compared to controls was found in the meta-analyses providing an indication of an association between MN and AUD. A 36%-higher mean-MRi in buccal cells (3.8+/-0.7) was found compared to lymphocytes (2.8+/-0.7)(P = 0.01). The meta-MRi in lymphocytes and buccal cells (1.7 and 3.0 respectively) suggest that buccal cells may be more sensitive. To assess their relative sensitivity, studies with measurements from the same subjects would be desirable. It is important that future studies (i) investigate, in well-designed powered studies, the prospective association of MN-formation with AUD and (ii) explore the molecular mechanisms by which chromosome shattering in MN and the release of chromatin fragments from MN lead to the formation of auto-antibodies.

Journal: Mutation Research - Fundamental & Molecular Mechanisms of Mutagenesis
ISSN: 0027-5107
Volume: 786
Publication year:2020
Keywords:Autoimmune Diseases/complications, Chromothripsis, Female, Humans, Inflammation/complications, Lymphocytes/pathology, Male, Micronuclei, Chromosome-Defective, Micronucleus Tests
CSS-citation score:1