< Back to previous page
Publication
Mitigating data quality challenges in ambulatory wrist-worn wearable monitoring through analytical and practical approaches
Journal Contribution - Journal Article
Chronic disease management and follow-up are vital for realizing sustained patient well-being and optimal health outcomes. Recent advancements in wearable technologies, particularly wrist-worn devices, offer promising solutions for longitudinal patient monitoring, replacing subjective, intermittent self-reporting with objective, continuous monitoring. However, collecting and analyzing data from wearables presents several challenges, such as data entry errors, non-wear periods, missing data, and wearable artifacts. In this work, we explore these data analysis challenges using two real-world datasets (mBrain21 and ETRI lifelog2020). We introduce practical countermeasures, including participant compliance visualizations, interaction-triggered questionnaires to assess personal bias, and an optimized pipeline for detecting non-wear periods. Additionally, we propose a visualization-oriented approach to validate processing pipelines using scalable tools such as tsflex and Plotly-Resampler. Lastly, we present a bootstrapping methodology to evaluate the variability of wearable-derived features in the presence of partially missing data segments. Prioritizing transparency and reproducibility, we provide open access to our detailed code examples, facilitating adaptation in future wearable research. In conclusion, our contributions provide actionable approaches for improving wearable data collection and analysis.
Journal: SCIENTIFIC REPORTS
ISSN: 2045-2322
Issue: 1
Volume: 14
Publication year:2024
Accessibility:Open