< Back to previous page

Publication

Power Efficiency Comparison of Event-Driven and Fixed-Rate Signal Conversion and Compression for Biomedical Applications

Journal Contribution - Journal Article

Energy-constrained biomedical recording systems need power-efficient data converters and good signal compression in order to meet the stringent power consumption requirements of many applications. In literature today, typically a SAR ADC in combination with digital compression is used. Recently, alternative event-driven sampling techniques have been proposed that incorporate compression in the ADC, such as level-crossing A/D conversion. This paper describes the power efficiency analysis of such level-crossing ADC (LCADC) and the traditional fixed-rate SAR ADC with simple compression. A model for the power consumption of the LCADC is derived, which is then compared to the power consumption of the SAR ADC with zero-order hold (ZOH) compression for multiple biosignals (ECG, EMG, EEG, and EAP). The LCADC is more power efficient than the SAR ADC up to a cross-over point in quantizer resolution (for example 8 bits for an EEG signal). This cross-over point decreases with the ratio of the maximum to average slope in the signal of the application. It also changes with the technology and design techniques used. The LCADC is thus suited for low to medium resolution applications. In addition, the event-driven operation of an LCADC results in fewer data to be transmitted in a system application. The event-driven LCADC without timer and with single-bit quantizer achieves a reduction in power consumption at system level of two orders of magnitude, an order of magnitude better than the SAR ADC with ZOH compression. At system level, the LCADC thus offers a big advantage over the SAR ADC.
Journal: IEEE Transactions on Biomedical Circuits and Systems
ISSN: 1932-4545
Issue: 4
Volume: 14
Pages: 746 - 756
Number of pages: 11
Publication year:2020