< Back to previous page

Publication

A Role of PET/MR Imaging in Dementia?

Journal Contribution - Journal Article

Since many years, magnetic resonance imaging (MRI) and positron emission tomography (PET) have a prominent role in neurodegenerative disorders and dementia, not only in a research setting but also in a clinical setting. For several decades, information from both modalities is combined ranging from individual visual assessments to fully integrating all images. Several tools are available to coregister images from MRI and PET and to covisualize these images. When studying neurodegenerative disorders with PET it is important to perform a partial volume correction and this can be done using the structural information obtained by MRI. With the advent of PET/MR, the question arises in how far this hybrid imaging modality is an added value compared to combining PET and MRI data from two separate modalities. One issue in PET/MR is still not yet completely settled, that is, the attenuation correction. This is of less importance for visual assessments but it can become an issue when combining data from PET/CT and PET/MR scanners in multicenter studies or when using cut-off values to classify patients. Simultaneous imaging has clearly some advantages: for the patient it is beneficial to have only one scan session instead of two but also in cases in which PET data are related to functional of physiological data acquired with MRI (such as functional MRI or arterial spin labeling). However, the most important benefit is currently the more integrated use of PET and MRI. This is also possible with separate measurements but requires more streamlining of the whole process. In that case coregistration of images is mandatory. It needs to be determined in which cases simultaneous PET/MRI leads to new insights or improved diagnosis compared to multimodal imaging using dedicated scanners.
Journal: Seminars in Nuclear Medicine
ISSN: 0001-2998
Issue: 3
Volume: 51
Pages: 296 - 302
Publication year:2021
Keywords:Radiology & nuclear medicine