< Back to previous page


U-PASS: An uncertainty-guided deep learning pipeline for automated sleep staging

Journal Contribution - Journal Article

With the increasing prevalence of machine learning in critical fields like healthcare, ensuring the safety and reliability of these systems is crucial. Estimating uncertainty plays a vital role in enhancing reliability by identifying areas of high and low confidence and reducing the risk of errors. This study introduces U-PASS, a specialized human-centered machine learning pipeline tailored for clinical applications, which effectively communicates uncertainty to clinical experts and collaborates with them to improve predictions. U-PASS incorporates uncertainty estimation at every stage of the process, including data acquisition, training, and model deployment. Training is divided into a supervised pre-training step and a semi-supervised recording-wise finetuning step. We apply U-PASS to the challenging task of sleep staging and demonstrate that it systematically improves performance at every stage. By optimizing the training dataset, actively seeking feedback from domain experts for informative samples, and deferring the most uncertain samples to experts, U-PASS achieves an impressive expert-level accuracy of 85% on a challenging clinical dataset of elderly sleep apnea patients. This represents a significant improvement over the starting point at 75% accuracy. The largest improvement gain is due to the deferral of uncertain epochs to a sleep expert. U-PASS presents a promising AI approach to incorporating uncertainty estimation in machine learning pipelines, improving their reliability and unlocking their potential in clinical settings.
Journal: Computers in Biology and Medicine
ISSN: 0010-4825
Volume: 171
Publication year:2024