< Terug naar vorige pagina

Publicatie

Fast quantitative time lapse displacement imaging of endothelial cell invasion.

Tijdschriftbijdrage - e-publicatie

In order to unravel rapid mechano-chemical feedback mechanisms in sprouting angiogenesis, we combine selective plane illumination microscopy (SPIM) and tailored image registration algorithms - further referred to as SPIM-based displacement microscopy - with an in vitro model of angiogenesis. SPIM successfully tackles the problem of imaging large volumes while upholding the spatial resolution required for the analysis of matrix displacements at a subcellular level. Applied to in vitro angiogenic sprouts, this unique methodological combination relates subcellular activity - minute to second time scale growing and retracting of protrusions - of a multicellular systems to the surrounding matrix deformations with an exceptional temporal resolution of 1 minute for a stack with multiple sprouts simultaneously or every 4 seconds for a single sprout, which is 20 times faster than with a conventional confocal setup. Our study reveals collective but non-synchronised, non-continuous activity of adjacent sprouting cells along with correlations between matrix deformations and protrusion dynamics.
Tijdschrift: PLoS One
ISSN: 1932-6203
Issue: 1
Volume: 15
Pagina's: e0227286 - e0227286
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Open