< Terug naar vorige pagina

Publicatie

Sn Substitution by Ge: Strategies to Overcome the Open-Circuit Voltage Deficit of Kesterite Solar Cells

Tijdschriftbijdrage - Tijdschriftartikel

Current state-of-the-art Cu2ZnSn(S,Se)(4) kesterite solar cells are limited by low open-circuit voltages (V-OC). In order to evaluate to what extent the substitution of Sn by Ge is able to result in higher V oc values, this article focuses on Cu2ZnGeSe4 "CZGSe" devices. To reveal their full potential, different strategies are explored that, in particular, aim at the optimization of the CZGSe/buffer heterojunction. Here, employing hard X-ray photoelectron spectroscopy, it is evidenced that only a combination of different surface treatments is able to remove all detrimental secondary phases. Further improvements are achieved by establishing a solar cell heat treatment in air. A systematic study of the impact of different annealing temperatures and durations determines the best heat treatment parameters to be 60 min at 200 degrees C. Also, Zn(O,S,OH) as a more transparent alternative to the heavy-metal compound CdS buffer layer has been realized. Combining all of the strategies, solar cells with 8.5 and 7.5% total area efficiency have been prepared, which is a record for Sn-free kesterite solar cells and any kesterite solar cell with a Zn(O,S,OH) buffer, respectively. Beyond these records, this work clearly confirms the emerging trend that Ge-for-Sn substitution is a successful strategy to improve the V-OC of kesterite solar cells.
Tijdschrift: ACS Applied Energy Materials
ISSN: 2574-0962
Issue: 6
Volume: 3
Pagina's: 5830 - 5839
Jaar van publicatie:2020
Trefwoorden:kesterite, CZGSe, V-OC germanium, high voltage
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:3
CSS-citation score:1
Auteurs:International
Authors from:Government, Higher Education, Private
Toegankelijkheid:Open