< Terug naar vorige pagina

Publicatie

Application of evolutionary algorithms to optimise one- and two-dimensional gradient chromatographic separations

Tijdschriftbijdrage - Tijdschriftartikel

We report on the performance of three classes of evolutionary algorithms (genetic algorithms (GA), evolution strategies (ES) and covariance matrix adaptation evolution strategy (CMA-ES)) as a means to enhance searches in the method development spaces of 1D- and 2D-chromatography. After optimisation of the design parameters of the different algorithms, they were benchmarked against the performance of a plain grid search. It was found that all three classes significantly outperform the plain grid search, especially in terms of the number of search runs needed to achieve a given separation quality. As soon as more than 100 search runs are needed, the ES algorithm clearly outperforms the GA and CMA-ES algorithms, with the latter performing very well for short searches (<50 search runs) but being susceptible to convergence to local optima for longer searches. It was also found that the performance of the ES and GA algorithms, as well as the grid search, follow a hyperbolic law in the large search run number limit, such that the convergence rate parameter of this hyperbolic function can be used to quantify the difference in required number of search runs for these algorithms. In agreement with one's physical expectations, it was also found that the general advantage of the GA and ES algorithms over the grid search, as well as their mutual performance differences, grow with increasing difficulty of the separation problem.
Tijdschrift: Journal of chromatography
ISSN: 0021-9673
Volume: 1628
Jaar van publicatie:2020
Trefwoorden:Evolutionary algorithms, Gradient elution, Liquid chromatography, Method development, Multi-dimensional chromatography
CSS-citation score:1
Toegankelijkheid:Open