< Terug naar vorige pagina

Publicatie

Designing nanoparticles and nanoalloys for gas-phase catalysis with controlled surface reactivity using colloidal synthesis and atomic layer deposition

Tijdschriftbijdrage - Review Artikel

Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst’s performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.
Tijdschrift: MOLECULES
ISSN: 1420-3049
Issue: 16
Volume: 25
Jaar van publicatie:2020
Toegankelijkheid:Open