< Terug naar vorige pagina

Publicatie

Scalable Synthesis, In Vitro cccDNA Reduction, and In Vivo Antihepatitis B Virus Activity of a Phosphonomethoxydeoxythreosyl Adenine Prodrug

Tijdschriftbijdrage - Tijdschriftartikel

Standard literature procedures for the chemical synthesis of l-threose nucleosides generally employ l-ascorbic acid as starting material. Herein, we have explored two alternative routes that start from either l-arabitol or l-diethyl tartrate, both affording 2-O-methyl-l-threofuranose as a key building block for nucleobase incorporation. The access to multigram quantities of this glycosyl donor in a reproducible fashion allows for the preparation of 2'-deoxy-α-l-threofuranosyl phosphonate nucleosides on a large scale. This methodology was applied to the gram scale synthesis of an aryloxy amidate prodrug of phosphonomethoxydeoxythreosyl adenine. This prodrug exerted potent activity against an entecavir-resistant hepatitis B virus (HBV) strain, while leading to a significant reduction in the levels of HBV covalently closed circular DNA in a cellular assay. Furthermore, its remarkable anti-HBV efficacy was also confirmed in vivo using a hydrodynamic injection-based HBV mouse model, without relevant toxicity and systemic exposure occurring.
Tijdschrift: Journal of Medicinal Chemistry
ISSN: 0022-2623
Issue: 22
Volume: 63
Pagina's: 13851 - 13860
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:10
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open