< Terug naar vorige pagina

Publicatie

Cortical compensation for hearing loss, but not age, in neural tracking of the fundamental frequency of the voice

Tijdschriftbijdrage - Tijdschriftartikel

Auditory processing is affected by advancing age and hearing loss, but the underlying mechanisms are still unclear. We investigated the effects of age and hearing loss on temporal processing of naturalistic stimuli in the auditory system. We used a recently developed objective measure for neural phase-locking to the fundamental frequency of the voice (f0) which uses continuous natural speech as a stimulus, that is, "f0-tracking." The f0-tracking responses from 54 normal-hearing and 14 hearing-impaired adults of varying ages were analyzed. The responses were evoked by a Flemish story with a male talker and contained contributions from both subcortical and cortical sources. Results indicated that advancing age was related to smaller responses with less cortical response contributions. This is consistent with an age-related decrease in neural phase-locking ability at frequencies in the range of the f0, possibly due to decreased inhibition in the auditory system. Conversely, hearing-impaired subjects displayed larger responses compared with age-matched normal-hearing controls. This was due to additional cortical response contributions in the 38- to 50-ms latency range, which were stronger for participants with more severe hearing loss. This is consistent with hearing-loss-induced cortical reorganization and recruitment of additional neural resources to aid in speech perception.NEW & NOTEWORTHY Previous studies disagree on the effects of age and hearing loss on the neurophysiological processing of the fundamental frequency of the voice (f0), in part due to confounding effects. Using a novel electrophysiological technique, natural speech stimuli, and controlled study design, we quantified and disentangled the effects of age and hearing loss on neural f0 processing. We uncovered evidence for underlying neurophysiological mechanisms, including a cortical compensation mechanism for hearing loss, but not for age.
Tijdschrift: Journal of Neurophysiology
ISSN: 0022-3077
Issue: 1
Volume: 126
Pagina's: 791 - 802
Jaar van publicatie:2021
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Open