< Terug naar vorige pagina

Publicatie

Current state-of-the-art of auditory functional MRI (fMRI) on zebra finches

Tijdschriftbijdrage - Tijdschriftartikel

Ondertitel:technique and scientific achievements
Songbirds provide an excellent model system exhibiting vocal learning associated with an extreme brain plasticity linked to quantifiable behavioral changes. This animal model has thus far been intensively studied using electrophysiological, histological and molecular mapping techniques. However, these approaches do not provide a global view of the brain and/or do not allow repeated measures, which are necessary to establish correlations between alterations in neural substrate and behavior. In contrast, functional Magnetic Resonance Imaging (fMRI) is a non-invasive in vivo technique which allows one (i) to study brain function in the same subject over time, and (ii) to address the entire brain at once. During the last decades, fMRI has become one of the most popular neuroimaging techniques in cognitive neuroscience for the study of brain activity during various tasks ranging from simple sensory-motor to highly cognitive tasks. By alternating various stimulation periods with resting periods during scanning, resting and task-specific regional brain activity can be determined with this technique. Despite its obvious benefits, fMRI has, until now, only been sparsely used to study cognition in non-human species such as songbirds. The Bio-Imaging Lab (University of Antwerp, Belgium) was the first to implement Blood Oxygen Level Dependent (BOLD) fMRI in songbirds and in particular zebra finches for the visualization of sound perception and processing in auditory and song control brain regions. The present article provides an overview of the establishment and optimization of this technique in our laboratory and of the resulting scientific findings. The introduction of fMRI in songbirds has opened new research avenues that permit experimental analysis of complex sensorimotor and cognitive processes underlying vocal communication in this animal model.
Tijdschrift: Journal of physiology
ISSN: 0928-4257
Volume: 107
Pagina's: 156 - 169
Jaar van publicatie:2013
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Closed