< Terug naar vorige pagina


Note on vector valued Hardy spaces related to analytic functions having distributional boundary values

Boekbijdrage - Boekhoofdstuk Conferentiebijdrage

Analytic functions defined on a tube domain $T^{C}\subset \mathbb{C}^{n}$ and taking values in a Banach space $X$ which are known to have $X$-valued distributional boundary values are shown to be in the Hardy space $H^{p}(T^{C},X)$ if the boundary value is in the vector valued Lebesgue space $L^{p}(\mathbb{R}^{n},X)$, where $1\leq p \leq \infty$ and $C$ is a regular open convex cone. Poisson integral transform representations of elements of $H^{p}(T^{C}, X)$ are also obtained for certain classes of Banach spaces, including reflexive Banach spaces.
Boek: Current trends in analysis, its applications and computation : proceedings of the 12th ISAAC congress, Aveiro, Portugal, 2019
Pagina's: 357 - 362
Jaar van publicatie:2022