< Terug naar vorige pagina


Singlet oxygen-based photoelectrocatalysis

Boek - Dissertatie

Ondertitel:from photosensitizer structures to plasmonic enhancement
Singlet molecular oxygen (1O2) has continuously attracted researchers' interest because of its involvement in various processes, such as in photodynamic reactions in biological and chemical systems. 1O2 is an effective electrophile and potent oxidizing agent and can be easily generated by photosensitization via the illumination of organic dyes with visible light. As described in Chapter 1, 1O2 has gained prominence in various applications such as wastewater treatment, photodynamic therapy of cancer, organic synthesis, and recently developed 1O2-based photoelectrochemical (PEC) sensing of phenolic compounds. Phenolic compounds are a potential source of contaminants that originates from industrial effluents and waste products of chemical and pharmaceutical industries. These phenolic compounds pose severe threats to humans and aquatic life after reaching the environment. Therefore, it is imperative to develop photoactive materials that efficiently generate 1O2 and oxidize phenolic compounds and antibiotics. The existing 1O2 generating photosensitizers (PSs) include porphyrins, phthalocyanines (Pcs), subphthalocyanines (SubPcs), and other dyes such as derivatives of xanthene (e.g., Rose Bengal (RB)), and fluorinated boron-dipyrromethene (BODIPYs), and phenothiazinium dyes (e. g. Methylene Blue (MB)) which display long-lived triplet excited state and can be used in 1O2-based applications. This thesis focuses on preparing efficient hybrid materials based on newly synthesized Pcs, different surface area titanium dioxide (TiO2) and plasmonic gold nanoparticles (AuNPs) for their use in the PEC detection of phenolic compounds. The first focus was on developing a fast amperometric method to test the photo-electrocatalytic activity of 1O2 producing PSs dissolved in MeOH based on the redox cycling of an electroactive phenolic compound, hydroquinone (HQ) (Chapter 2). This method of testing PSs does not require the accumulation of a reaction product since the amperometric signal develops near instantly when the light is on, which enables dynamic monitoring of a PSs activity at varying conditions in a single experiment. This method was crucial to measure high 1O2 quantum yield and low yield in the same experimental conditions. Moreover, the obtained results revealed a range of working parameters affecting the PEC activity of PSs. The next goal was to immobilize tert-butyl substituted aluminum Pc (t-BuPcAlCl) on the solid support, which showed a high 1O2 quantum yield. However, before immobilizing Pc on a solid support such as TiO2, it is essential to know the electronic energy level of Pcs for the possible electron transfers from Pcs to TiO2. Therefore, Chapter 3 explored the (spectro)electrochemical properties of t-BuPcAlCl Pc. Next, in Chapter 4, t-BuPcAlCl Pc and other tert-butyl substituted Pcs with Zn central metal, t-BuPcZn, and its metal-free derivative t-BuPcH2 were immobilized on different surface area TiO2. The PEC activity of immobilized Pcs on TiO2 toward different phenols and antibiotics was studied, and the action mechanism was revealed and compared with sterically hindered fluorinated Pc F64PcZn. In the final part of this thesis plasmonic AuNPs were introduced combined with trimethylsilane-protected acetylene functionalized ZnPc (TMSZnPc) to study the synergistic effect that boosts the overall activity toward the detection of phenols under visible light illumination (Chapter 5) . The TMSZnPc was coupled with AuNPs via a click chemistry approach. The 1O2 quantum yield of TMSZnPc improved significantly after conjugating with AuNPs, and, subsequently, the PEC activity for detecting HQ. The theoretical and experimental investigation demonstrated that the plasmonic enhancement of TMSZnPc is driven by the near-field mechanism. This shows the importance of plasmonic AuNPs with other photoactive species for their use in 1O2-based applications. The fundamental knowledge obtained in this doctoral study will ultimately deepen the understanding of developing 1O2-based PEC sensors for detecting phenolic compounds and pharmaceuticals in the wastewater stream, helping to choose efficient materials and, in the last instance, a more sustainable future especially access to clean water for everyone.
Aantal pagina's: 182
Jaar van publicatie:2023
Trefwoorden:Doctoral thesis