< Terug naar vorige pagina


Visceral leishmaniasis: spatiotemporal heterogeneity and drivers underlying the hotspots in Muzaffarpur, Bihar, India

Tijdschriftbijdrage - Tijdschriftartikel

BACKGROUND: Despite the overall decrease in visceral leishmaniasis (VL) incidence on the Indian subcontinent, there remain spatiotemporal clusters or 'hotspots' of new cases. The characteristics of these hotspots, underlying transmission dynamics, and their importance for shaping control strategies are not yet fully understood and are investigated in this study for a VL endemic area of ~100,000 inhabitants in Bihar, India between 2007-2015.

METHODOLOGY/PRINCIPAL FINDINGS: VL incidence (cases/10,000/year) dropped from 12.3 in 2007 to 0.9 in 2015, which is just below the World Health Organizations' threshold for elimination as a public health problem. Clustering of VL was assessed between subvillages (hamlets), using multiple geospatial and (spatio)temporal autocorrelation and hotspot analyses. One to three hotspots were identified each year, often persisting for 1-5 successive years with a modal radius of ~500m. The relative risk of having VL was 5-86 times higher for inhabitants of hotspots, compared to those living outside hotspots. Hotspots harbour significantly more households from the two lowest asset quintiles (as proxy for socio-economic status). Overall, children and young adelescents (5-14 years) have the highest risk for VL, but within hotspots and at the start of outbreaks, older age groups (35+ years) show a comparable high risk.

CONCLUSIONS/SIGNIFICANCE: This study demonstrates significant spatiotemporal heterogeneity in VL incidence at subdistrict level. The association between poverty and hotspots confirms that VL is a disease of 'the poorest of the poor' and age patterns suggest a potential role of waning immunity as underlying driver of hotspots. The recommended insecticide spraying radius of 500m around detected VL cases corresponds to the modal hotspot radius found in this study. Additional data on immunity and asymptomatic infection, and the development of spatiotemporally explicit transmission models that simulate hotspot dynamics and predict the impact of interventions at the smaller geographical scale will be crucial tools in sustaining elimination.

Tijdschrift: PLoS Negl Trop Dis
ISSN: 1935-2727
Issue: 12
Volume: 12
Jaar van publicatie:2018
Trefwoorden:Adolescent, Adult, Animals, Asymptomatic Infections, Child, Child, Preschool, Cluster Analysis, Humans, Immunity, Incidence, India/epidemiology, Infant, Insecticides/administration & dosage, Leishmaniasis, Visceral/epidemiology, Middle Aged, Models, Statistical, Poverty, Public Health, Risk, Spatio-Temporal Analysis, Young Adult