< Terug naar vorige pagina
Publicatie
Zinc-indium-sulfide favors efficient C - H bond activation by concerted proton-coupled electron transfer.
Tijdschriftbijdrage - e-publicatie
C - H bond activation is a ubiquitous reaction that remains a major challenge in chemistry. Although semiconductor-based photocatalysis is promising, the C - H bond activation mechanism remains elusive. Herein, we report value-added coupling products from a wide variety of biomass and fossil-derived reagents, formed via C - H bond activation over zinc-indium-sulfides (Zn-In-S). Contrary to the commonly accepted stepwise electron-proton transfer pathway (PE-ET) for semiconductors, our experimental and theoretical studies evidence a concerted proton-coupled electron transfer (CPET) pathway. A pioneering microkinetic study, considering the relevant elementary steps of the surface chemistry, reveals a faster C - H activation with Zn-In-S because of circumventing formation of a charged radical, as it happens in PE-ET where it retards the catalysis due to strong site adsorption. For CPET over Zn-In-S, H abstraction, forming a neutral radical, is rate-limiting, but having lower energy barriers than that of PE-ET. The rate expressions derived from the microkinetics provide guidelines to rationally design semiconductor catalysis, e.g., for C - H activation, that is based on the CPET mechanism.
Tijdschrift: Nature Communications
ISSN: 2041-1723
Issue: 1
Volume: 15
Jaar van publicatie:2024
Toegankelijkheid:Open