Publicaties
Breakdown of Universal Scaling for Nanometer-Sized Bubbles in Graphene KU Leuven
We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability ...
A chemisorbed interfacial layer for seeding atomic layer deposition on graphite KU Leuven
The integration of graphene, and more broadly two-dimensional materials, into devices and hybrid materials often requires the deposition of thin films on their usually inert surface. As a result, strategies for the introduction of surface reactive sites have been developed but currently pose a dilemma between robustness and preservation of the graphene properties. A method is reported here for covalently modifying graphitic surfaces, introducing ...
Cyclic Plasma Halogenation of Amorphous Carbon for Defect-Free Area-Selective Atomic Layer Deposition of Titanium Oxide KU Leuven
As critical dimensions in integrated circuits continue to shrink, the lithography-based alignment of adjacent patterned layers becomes more challenging. Area-selective atomic layer deposition (ALD) allows circumventing the alignment issue by exploiting the chemical contrast of the exposed surfaces. In this work, we investigate the selective deposition of TiO2 by plasma halogenation of amorphous carbon (a-C:H) acting as a growth-inhibiting layer. ...
Multicomponent Covalent Chemical Patterning of Graphene KU Leuven
The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially ...