< Back to previous page

Publication

Long-term learning behavior in a recurrent neural network for sound recognition

Book Contribution - Book Chapter Conference Contribution

In this paper, the long-term learning properties of an artificial neural network model, designed for sound recognition and computational auditory scene analysis in general, are investigated. The model is designed to run for long periods of time (weeks to months) on low-cost hardware, used in a noise monitoring network, and builds upon previous work by the same authors. It consists of three neural layers, connected to each other by feedforward and feedback excitatory connections. It is shown that the different mechanisms that drive auditory attention emerge naturally from the way in which neural activation and intra-layer inhibitory connections are implemented in the model. Training of the artificial neural network is done following the Hebb principle, dictating that "Cells that fire together, wire together", with some important modifications, compared to standard Hebbian learning. As the model is designed to be on-line for extended periods of time, also learning mechanisms need to be adapted to this. The learning needs to be strongly attention-and saliency-driven, in order not to waste available memory space for sounds that are of no interest to the human listener. The model also implements plasticity, in order to deal with new or changing input over time, without catastrophically forgetting what it already learned. On top of that, it is shown that also the implementation of shortterm memory plays an important role in the long-term learning properties of the model. The above properties are investigated and demonstrated by training on real urban sound recordings.
Book: IEEE International Joint Conference on Neural Networks (IJCNN)
Pages: 3116 - 3123
ISBN:9781479914845
Publication year:2014
BOF-keylabel:yes
IOF-keylabel:yes
Accessibility:Open