< Back to previous page

Project

Tailoring Applications-Relevant Properties in Poly(Vinylidene Fluoride)-based Homo-, Co- and Ter-Polymers through Modification of Their Three-Phase Structure

Poly(vinylidene fluoride) (PVDF)-based homo-, co- and ter-polymers are well-known for their ferroelectric and relaxor-ferroelectric properties. Their semi-crystalline morphology consists of crystalline and amorphous phases, plus interphase regions in between, and governs the relevant electro-active properties. In this work, the influence of chemical, thermal and mechanical treatments on the structure and morphology of PVDF-based polymers and on the related ferroelectric/relaxor-ferroelectric properties is investigated. Polymer films were prepared in different ways and subjected to various treatments such as annealing, quenching and stretching. The resulting changes in the transitions and relaxations of the polymer samples were studied by means of dielectric, thermal, mechanical and optical techniques. In particular, the origin(s) behind the mysterious mid-temperature transition (Tmid) that is observed in all PVDF-based polymers was assessed. A new hypothesis is proposed to describe the  transition as a result of multiple processes taking place within the temperature range of the transition.  The contribution of the individual processes to the observed overall transition depends on both the chemical structure of the monomer units and the processing conditions which also affect the melting transition. Quenching results in a decrease of the overall crystallinity and in smaller crystallites. On samples quenched after annealing, notable differences in the fractions of different crystalline phases have been observed when compared to samples that had been slowly cooled. Stretching of poly(vinylidene fluoride-tetrafluoroethylene) (P(VDF-TFE)) films causes an increase in the fraction of the ferroelectric β-phase with simultaneous increments in the melting point (Tm) and the crystallinity (χc) of the copolymer. While an increase in the stretching temperature does not have a profound effect on the amount of the ferroelectric phase, its stability appears to improve.

Measurements of the non-linear dielectric permittivity  in a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE- CFE)) relaxor-ferroelectric (R-F) terpolymer reveal peaks at 30 and 80 °C that cannot be identified in conventional dielectric spectroscopy. The former peak is associated with and may help to understand the non-zero  values that are found for the paraelectric terpolymer phase. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 °C and is due to conduction processes and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. Annealing lowers the Curie-transition temperature of the terpolymer as a consequence of its smaller ferroelectric-phase fraction, which by default exists even in terpolymers with relatively high CFE content. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves observed on differently heat-treated samples. Upon heating, the hysteresis curves evolve from those known for a ferroelectric to those of a typical relaxor-ferroelectric material. Comparing dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the non-annealed samples − irrespective of the measurement temperature − and also exhibit ideal relaxor-ferroelectric behavior at ambient temperatures, which makes them excellent candidates for related applications at or near room temperature. However, non-annealed films − by virtue of their higher ferroelectric activity − show a larger and more stable remanent polarization at room temperature, while annealed samples need to be poled below 0 °C to induce a well-defined polarization. Overall, by modifying the three phases in PVDF-based polymers, it has been demonstrated how the preparation steps and processing conditions can be tailored to achieve the desired properties that are optimal for specific applications.

Date:31 Jan 2020 →  8 Apr 2022
Keywords:P(VDF-TrFE-CFE) relaxor ferroelectric polymers, dielectric spectroscopy, ferroelectric polymers, vinylidene fluoride based polymers
Disciplines:Dielectrics, piezoelectrics and ferroelectrics
Project type:PhD project