< Back to previous page

Publication

Impact of low-dose electron irradiation on $n^{+}p$ silicon strip sensors

Journal Contribution - Journal Article

The response of n(+)p silicon strip sensors to electrons from a Sr-90 source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 im thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 ifm, and both p-stop and p-spray isolation of the n strips were studied. The electrons from the Sr-90 source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 degrees C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxidecharge density due to the ionization of the SiO2 by the radiation from the 13 source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n'p strip sensors is discussed. (C) 2015 Elsevier B.V.
Journal: Nuclear instruments and methods in physics research : A: accelerators, spectrometers, detectors and associated equipment
ISSN: 0168-9002
Volume: 803
Pages: 100 - 112
Publication year:2015
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open