< Terug naar vorige pagina

Publicatie

A subthreshold current-sensing Sigma Delta modulator for low-voltage and low-power sensor interfaces

Tijdschriftbijdrage - Tijdschriftartikel

Copyright © 2014 John Wiley & Sons, Ltd. A continuous-time (CT) ΣΔ modulator for sensing and direct analog-to-digital conversion of nA-range (subthreshold) currents is presented in this work. The presented modulator uses a subthreshold technique based on subthreshold source-coupled logic cells to efficiently convert subthreshold current to digital code without performing current-to-voltage conversion. As a benefit of this technique, the current-sensing CT ΣΔ modulator operates at low voltage and consumes very low power, which makes it convenient for low-power and low-voltage current-mode sensor interfaces. The prototype design is implemented in a 0.18 μm standard complementary metal-oxide semiconductor technology. The modulator operates with a supply voltage of 0.8 V and consumes 5.43 μW of power at the maximum bandwidth of 20 kHz. The obtainable current-sensing resolution ranges from effective number of bits (ENOB) = 7.1 bits at a 5 kHz bandwidth to ENOB = 6.5 bits at a 20 kHz bandwidth (ENOB). The obtained power efficiency (peak FoM = 1.5 pJ/conv) outperforms existing current-mode analog-to-digital converter designs and is comparable with the voltage-mode CT ΣΔ modulators. The modulator generates very low levels of switching noise thanks to CT operation and subthreshold current-mode circuits that draw a constant subthreshold current from the voltage supply. The presented modulator is used as a readout interface for sensors with current-mode output in ultra low-power conditions and is also suitable to perform on-chip current measurements in power management circuits.
Tijdschrift: International Journal of Circuit Theory and Applications
ISSN: 0098-9886
Issue: 11
Volume: 43
Pagina's: 1597 - 1614
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Auteurs:International
Authors from:Higher Education