< Terug naar vorige pagina
Publicatie
Scalable Bayesian phylogenetics
Tijdschriftbijdrage - Tijdschriftartikel
Korte inhoud:Recent advances in Bayesian phylogenetics offer substantial computational savings to accommodate increased genomic sampling that challenges traditional inference methods. In this review, we begin with a brief summary of the Bayesian phylogenetic framework, and then conceptualize a variety of methods to improve posterior approximations via Markov chain Monte Carlo (MCMC) sampling. Specifically, we discuss methods to improve the speed of likelihood calculations, reduce MCMC burn-in, and generate better MCMC proposals. We apply several of these techniques to study the evolution of HIV virulence along a 1536-tip phylogeny and estimate the internal node heights of a 1000-tip SARS-CoV-2 phylogenetic tree in order to illustrate the speed-up of such analyses using current state-of-the-art approaches. We conclude our review with a discussion of promising alternatives to MCMC that approximate the phylogenetic posterior. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Gepubliceerd in: Philosophical Transactions of the Royal Society of London B, Biological Sciences
ISSN: 0962-8436
Issue: 1861
Volume: 377
Jaar van publicatie:2022
Trefwoorden:Multidisciplinaire biologie
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:6
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open
Reviewstatus:Peerreview